The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 17, 1992
Filed:
Jan. 04, 1991
George W Berkstresser, Bridgewater, NJ (US);
Charles D Brandle, Jr, Basking Ridge, NJ (US);
AT&T Bell Laboratories, Murray Hill, NJ (US);
Abstract
The invention is a technique for the growth of single crystals of rare earth doped rare-earth orthosilicate crystals which may be used as the laser medium in solid-state non-semiconductor lasers. This type of laser has applications in electronics, communications, aerospace systems, and manufacturing technology where high optical output lasers are utilized. Of particular interest is the Y.sub.2-x Nd.sub.x SiO.sub.5 crystal, with x being up to 0.3, which may be efficiently pumped by a semiconductor laser, solid state non-semiconductor laser, a flashlamp or some other source of light radiation, and has been found to be operable at very high optical output. The rare-earth orthosilicate crystals are grown in accordance with this invention by a Czochralski technique from a molten mixture of constituent oxides in an inert atmosphere containing oxygen. Inclusion of oxygen in the inert atmosphere in concentration of from about 300 to about 9,000 PPM of oxygen resulted in substantial reduction in the density of light scattering defect sites and, thus, in substantial increase in the optical energy which may be applied to the crystal without causing substantial damage to the crystal in comparison to the crystals grown in an inert atmosphere containing less than 300 PPM, such as 200 PPM and less, of oxygen. By application of the growth atmosphere composition control, optical damage thresholds have been increased by more than an order of magnitude.