The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Nov. 10, 1992

Filed:

May. 09, 1991
Applicant:
Inventors:

Daniel K Negus, La Honda, CA (US);

Luis A Spinelli, Sunnyvale, CA (US);

Timothy Johnston, Mt. View, CA (US);

Assignee:

Coherent, Inc., Palo Alto, CA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H01S / ;
U.S. Cl.
CPC ...
372 18 ; 372 98 ; 372107 ; 372108 ;
Abstract

A passively mode-locked laser (110) is disclosed that includes a resonant cavity (112, 114) having a gain medium (116) therein. A transmissive element (116), which may be the gain medium, is also located in the cavity and is formed from a material which varies the two-dimensional, lateral spatial profile of the beam with respect to intensity due to the Kerr effect. The resonator is arranged such that the round trip gain of the system increases with respect to the intensity of the beam so that mode-locking operation can be achieved. In one approach, the variation in the spatial profile is used to increase the extraction of energy from the gain medium. In another approach, the variation in spatial profile which occurs with an increase in intensity is used to decrease the loss in the system so that pulse operation is favored. In an illustrated embodiment, wherein the gain medium (116) is formed from titanium-sapphire, the self-phase modulation of the crystal is also used to compress the pulses into the femtosecond range. In addition, a prism set (136, 138) can be used to balance the group velocity dispersion and self-phase modulation of the gain crystal to achieve stable, soliton-like operation. In the preferred embodiment, mode-locking behavior is initiating by rotating a transmissive optical element (230, 232) located in the cavity in a manner to vary the path length of the beam.


Find Patent Forward Citations

Loading…