The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 08, 1992
Filed:
Aug. 05, 1991
Christopher V Kimball, West Redding, CT (US);
Sevig Ayter, Cupertino, CA (US);
Schlumberger Technology Corporation, New York, NY (US);
Abstract
Methods for characterizing acoustic transducers and using a characterized acoustic transducer for measuring cement impedance of a cased well are disclosed. The method for characterizing the acoustic transducer generally comprises: arranging the acoustic transducer a predetermined distance from a calibration target of known thickness; transmitting a pulse from the acoustic transducer through a known medium and toward the calibration target and measuring a return signal received therefrom; and fitting, via minimization, a return signal calculation generated by a model of the return signal which has a limited number of parameters, to the received return signal to determine a value for at least one of the parameters and thereby characterize the transducer. The preferred parameters for characterization are the transducer radius and stand-off, such that the transducer may be characterized as having an effective stand-off and an effective radius. The method for measuring cement impedance behind the casing in a well utilizes the method for characterizing the transducer, where the calibration target is preferbly of the same radius and thickness as the casing of the well. Then, downhole, a pulse is transmitted toward the casing in the well and the return signal is measured. Using the effective stand-off and effective radius previously determined as fixed values, the model of the return signal, which utilizes reflective coefficients which, inter alia, are a function of the cement impedance, is fit to the actual return signal to determine an indication of the cement impedance.