The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 02, 1992
Filed:
Feb. 09, 1990
Hiroyuki Ikezi, Rancho Santa Fe, CA (US);
John S deGrassie, Encinitas, CA (US);
General Atomics, San Diego, CA (US);
Abstract
A high power multiple pulse generator includes a plurality of transmission line sections, adjacent sections of which are coupled together by a saturable inductor. One transmission line section is switchably connected to a load impedance through an output switch. With the output switch open, the coupled transmission line sections are charged to a desired voltage potential. A burst of multiple pulses is generated by closing the output switch, causing the charge on the transmission line section connected to the load through the closed switch to be delivered to the load as a first pulse. This first pulse has an amplitude equal to one half of the charging potential and a duration that is a function of the length of the transmission line section. Once this first pulse is delivered to the load, a voltage is developed across the saturable inductor coupling the discharged transmission line section with an adjacent charged transmission line section, causing current to flow therethrough. When the current flowing through the inductor reaches a certain amplitude, the saturable inductor saturates, effectively transferring the charge of the next transmission line section to the load as a second pulse. The interval between the first and second pulses is a function of the saturation time of the saturable inductor. This process continues with the number of pulses delivered to the load being equal to the number of transmission line sections.