The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 31, 1991
Filed:
Dec. 24, 1990
Donald C Chang, Thousand Oaks, CA (US);
Kar W Yung, Torrance, CA (US);
Joseph G Gurley, Los Angeles, CA (US);
Urban A Van Der Embse, Los Angeles, CA (US);
Hughes Aircraft Company, Los Angeles, CA (US);
Abstract
An efficient digital beam-forming network (100) utilizing a relatively few small-scale A/D converters is disclosed herein. The inventive beam-forming network (100) is disposed to generate an output beam B in response to a set of N input signals. The set of input signals is provided by an antenna array (110) having N elements, upon which is incident an electromagnetic wavefront of a first carrier frequency. The present invention includes an orthogonal encoder circuit (170) for generating a set of N orthogonal voltage waveforms. A set of biphase modulators (162-168) modulates the phase of each of the input signals in response to one of the orthogonal voltage waveforms, thereby generating a set of N phase modulated input signals. The N phase modulated input signals are combined within an adder (180) to form a composite input signal. The inventive network (100) further includes a downconverting mixer (184) for generating an IF input signal in response to the composite input signal. The IF input signal is then separated into baseband in-phase and quadrature-phase components by an I/Q split network 192. A pair of A/D converters (198, 200) then sample the in-phase and quadrature-phase components of the input signal. A decoder (202), coupled to the orthogonal encoder circuit (170), provides decoded digitial in-phase signals and decoded digital quadrature phase signals in response to the digital in-phase and quadrature-phase signals. The present invention further includes a digital beam-former (130) for generating the output beam B by utilizing the decoded in-phase and quadrature-phase signals.