The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 31, 1991
Filed:
Jun. 04, 1990
Samuel C Weaver, Knox County, TN (US);
Sally G Padron, Knox County, TN (US);
Apollo Concepts, Inc., Knoxville, TX (US);
Abstract
A method for the preparation of ceramic composites containing at least aluminum oxide and aluminum boride, and the composite materials that result from the method. Intimate mixtures of finely-divided powdered aluminum metal and anhydrous boric oxide, with ratios (by weight) of about 0.5 to twenty parts of aluminum metal to one part of boric oxide, are subjected to a temperature to cause a complete reaction between the starting materials. If the ratio is above about 1.25 parts of aluminum to one part of boric oxide, the resultant product will include aluminum in addition to the aluminum oxide and aluminum boride. The ratio is selected to provide the desired hardness and toughness. Ratios between about 1 and 1.2 provide a composite having the highest hardness, with greater amounts of aluminum metal providing increased toughness. Several compositions are described, with hot pressing typically being used to provide the desired heating cycle. Typically, the mixed powders are hot pressed at about 1500 and 1600 degrees C. for about 45 minutes at 6000 psi to produce a product approaching 100% theoretical density. When additional strength is desired, various reinforcing materials can be added to the base mixture, with these reinforcing materials typically being ceramic fibers, whiskers and platelets. The resultant materials will have application as cutting tools, wear parts, armor, insualtion, etc. High yields are achieved, and the method is inexpensive.