The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Dec. 17, 1991

Filed:

Oct. 03, 1990
Applicant:
Inventor:

Harold R Clark, Fanwood, NJ (US);

Assignee:

AT&T Bell Laboratories, Murray Hill, NJ (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G02B / ;
U.S. Cl.
CPC ...
385 33 ; 372 36 ;
Abstract

Efficient coupling between an optoelectronic device (13) and an optical fiber (15) is obtained by using different monocrystalline elements of different crystallographic orientation for mounting, respectively, the fiber and the optoelectronic device. For example, the crystallographic orientation of an upper monocrystalline element (17) is chosen such that a horizontal groove (20) for supporting the optical fiber and a reflecting surface (19) for directing light into the fiber may both be made by anisotropic etching. The crystallographic orientation of a lower monocrystalline silicon element is chosen such that appropriate etching will yield a mounting surface (23) for the optoelectronic device (13) which is suitable for directing light from the reflecting surface (19) into the optical fiber (15) with maximum efficiency. In one illustrative embodiment, the upper monocrystalline element (17) is {100} silicon, and the lower monocrystalline element (18) is {112} silicon. As will be explained more fully later, this permits anisotropic etching so as to form a V-groove (20) that supports a horizontally-extending optic fiber, a reflecting surface (19) that extends at 54.75.degree., and a support surface (23) for the optoelectronic device that extends at 19.48.degree. with respect to the horizontal. These relative angles provide for optimum optical coupling between the optoelectronic device and the optical fiber, while providing horizontal surfaces for supporting both electronic circuitry and the optical fiber, as is desired for secure packaging and integration of the package apparatus into a lightwave communications system.


Find Patent Forward Citations

Loading…