The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 19, 1991
Filed:
Nov. 30, 1989
John S Denker, Leonardo, NJ (US);
Richard E Howard, Highland Park, NJ (US);
Lawrence D Jackel, Holmdel, NJ (US);
Yann LeCun, Middletown, NJ (US);
AT&T Bell Laboratories, Murray Hill, NJ (US);
Abstract
Highly accurate, reliable optical character recognition is afforded by a layered network having several layers of constrained feature detection wherein each layer of constrained feature detection includes a plurality of constrained feature maps and a corresponding plurality of feature reduction maps. Each feature reduction map is connected to only one constrained feature map in the same layer for undersampling that constrained feature map. Units in each constrained feature map of the first constrained feature detection layer respond as a function of a corresponding kernel and of different portions of the pixel image of the character captured in a receptive field associated with the unit. Units in each feature map of the second constrained feature detection layer respond as a function of a corresponding kernel and of different portions of an individual feature reduction map or a combination of several feature reduction maps in the first constrained feature detection layer as captured in a receptive field of the unit. The feature reduction maps of the second constrained feature detection layer are fully connected to each unit in the final character classification layer. Kernels are automatically learned by constrained back propagation during network initialization or training.