The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 29, 1991
Filed:
Oct. 23, 1987
Garry N Hulderman, Riverside, CA (US);
Eugene Phillips, Diamond Bar, CA (US);
Richard J Swanson, Pomona, CA (US);
General Dynamics Corporation, Pomona, CA (US);
Abstract
A millimeter wave device having a dielectric substrate with a pair of substantially parallel planar surfaces with at least one predetermined millimeter wave circuit pattern formed in a conductive layer located on at least one of the substrate surfaces. A substantially planar conductive channel plate is mounted adjacent the conductive layer on one substrate surface with the channel plate having an aperture overlying each circuit pattern formed in the conductive layer. A substantially planar conductive cover plate is mounted adjacent one of the channel plates so as to form a first cavity in the region defined by the substrate surface, the channel plate aperture and the cover plate. The device may further include a second substantially planar conductive channel plate mounted adjacent the other one of the substrate surfaces with the second channel plate having an aperture corresponding to and aligned with the first channel plate aperture. A second substantially planar conductive cover plate is mounted adjacent the second channel plate so as to form a second cavity in the region defined by the other substrate surface, the second channel plate aperture and the second cover plate. A substantially planar conductive back plate may be mounted adjacent each cover plate to provide support to the device structure. For the production of large quantity, high yield devices, the channel plates, cover plates, and back plates are fabricated by precision techniques such as by photolithography with chemical milling, or electrodischarge machine wire saw fabrication techniques to achieve device high performance operation. In an alternate embodiment of the invention the channel plates, cover plates and back plates are integrally formed by combining photolithography and electroforming techniques.