The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Sep. 24, 1991

Filed:

Jul. 05, 1990
Applicant:
Inventor:

Joseph E Fritsch, Oak Park, MI (US);

Assignee:

Other;

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
F16H / ;
U.S. Cl.
CPC ...
475192 ; 475183 ; 475185 ; 475191 ;
Abstract

A transverse axis infinitely variable transmission of the traction type which uses a planetary reduction principle whereby the highest input/output speed ratio is achieved as the contact radii of the elements approach similarity. All the traction elements of the present invention operate at virtually the same high surface speed whereby the minimum relative tangential force, transmitted through the traction contacts, will generate the maximum torque through the transmission. The present invention includes a spider which rotates with the main shaft about the first axis of the transmission. Compound-plants are rotatably supported by spindles which radiate outwardly from the spider hub. The axis of rotation of the compound-planets is transverse to the first axis, thereby insuring that the maximum number of traction elements of the same approximate size are incorporated into the smallest possible envelope. A first surface of each of the compound-planets is engaged with a non-rotating reaction member. A second surface of each of the compound planets is engaged with a rotor. The unique geometry of the traction elements results in a traction contact shape which is a long, narrow oval, with the major axis in the rolling direction. This geometry greatly increases the coefficient of traction, since traction is directly related to the buildup of lubricant strain in the rolling direction. Additionally, this traction contact shape virtually eliminates spin related fluid shear, thereby greatly increasing efficiency. The present invention has a very short power path consisting of only two traction contacts.


Find Patent Forward Citations

Loading…