The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 20, 1991
Filed:
Dec. 21, 1990
Sergej T Buljan, Acton, MA (US);
Helmut Lingertat, Dorchester, MA (US);
Steven F Wayne, Scituate, MA (US);
GTE Laboratories Incorporated, Waltham, MA (US);
Abstract
A method for manufacturing a dense cermet article including about 80-95% by volume of a granular hard phase and about 5-20% by volume of a metal binder phase. The hard phase is (a) the hard refractory carbides, nitrides, carbonitrides, oxycarbides, oxynitrides, carboxynitrides, borides, and mixtures thereof of the elements selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and B, or (b) the hard refractory carbides, nitrides, carbonitrides, oxycarbides, oxynitrides, and carboxynitrides, and mixtures thereof of a cubic solid solution of Zr--Ti, Hf--Ti, Hf--Zr, V--Ti, Nb--Ti, Ta--Ti, Mo--Ti, W--Ti, W--Hf, W--Nb, or W--Ta. The binder phase is a combination of Ni and Al having a Ni:Al weight ratio of from about 85:15 to about 88:12, and 0-5% by weight of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Co, B, and/or C. The method involves presintering the hard phase/binder phase mixture in a vacuum or inert atmosphere at about 1475.degree.-1675.degree. C., then HIPing at about 1575.degree.-1675.degree. C., in an inert atmosphere, and at about 34-207 MPa pressure. Limiting the presintering temperature to 1475.degree.-1575.degree. C. and keeping the presintering temperature at least 50.degree. C. below the hot pressing temperature, produces an article of gradated hardness, harder at the surface than at the core.