The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 13, 1991
Filed:
Oct. 13, 1988
William F Schreiber, Cambridge, MA (US);
Massachusetts Institute of Technology, Cambridge, MA (US);
Abstract
The presence of random noise, interference, multipath, and imperfect frequency response in terrestrial broadcasting channels, and of pervasive low-level reflections in cable systems, degrades the quality of television reception. These effects tend to reduce the difference in quality between that of NTSC and that of various advanced television systems, as actually delivered to the home via such channels. Several methods are disclosed for dealing with these effects, and thus to preserve the improved quality made possible by currently proposed EDTV and HDTV systems. Automatic channel equalization is used for first-order correction of multipath and frequency distortion. A scrambling method is described that transforms all remaining degradations to additive random noise, which, for a given noise power, is of minimum visibility. Random noise, whether additive or produced by scrambling of other defects, is suppressed by adaptive modulation. If the channel SNR is high enough, some digital data can be transmitted in addition to the analog data by a method called 'data under'. The methods are applied to a receiver-compatible system that utilizes a very low-power 3-MHz augmentation channel as well as to a bandwidth-efficient 6-MHz system that is not receiver compatible. One version of the latter system can be operated at such low SNR that it may be possible to utilize the taboo channels.