The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 13, 1991
Filed:
Feb. 06, 1990
Haruyoshi Tanabe, Tokyo, JP;
Chihiro Taki, Tokyo, JP;
Katsuhiro Iwasaki, Tokyo, JP;
Masahiro Kawakami, Tokyo, JP;
Toshio Takaoka, Tokyo, JP;
NKK Corporation, Tokyo, JP;
Abstract
A method for manufacturing molten metal containing Ni and Cr comprises a process of smelting and reducing Ni ore, and a process of smelting and reducing Cr ore. The process of smelting and reducing Ni ore comprises the steps of charging molten iron into a smelting reduction furnace having a top-blow oxygen lance and tuyeres for blowing stirring gas, charging Ni ore, carbonaceous material and flux into the smelting reduction furnace, blowing decarbonization oxygen and post-combustion oxygen from the top-blow oxygen lance into the smelting reduction furnace, blowing stirring gas for stirring the molten metal and slag inside the smelting reduction furnace from the tuyeres, and controlling post-combustion ratio [(H.sub.2 O+CO.sub.2)/(H.sub.2 +H.sub.2 O+CO+CO.sub.2)] at 0.3 or more. The process of smelting and reducing said Cr ore comprises charging Cr ore, carbonaceous material and flux into the smelting reduction furnace holding the molten metal containing Ni, blowing decarbonization oxygen and post-combustion oxygen from the top-blow oxygen lance into the smelting reduction furnace, blowing stirring gas for stirring the molten metal and slag inside the smelting reduction furnace from the tuyeres, and controlling post-combustion ratio [(H.sub.2 O+CO.sub.2)/(H.sub.2 +H.sub.2 O+CO+CO.sub.2)] at 0.3 or more.