The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jul. 23, 1991

Filed:

Oct. 13, 1989
Applicant:
Inventors:

Edward J Flynn, Summit, NJ (US);

Carl J McGrath, Atkinson, NH (US);

Paul M Nitzsche, Plainfield, NJ (US);

Charles B Roxlo, Bridgewater, NJ (US);

Assignee:

AT&T Bell Laboratories, Murray Hill, NJ (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01L / ; H01L / ;
U.S. Cl.
CPC ...
437-8 ; 148D / ; 148D / ; 437129 ; 437133 ;
Abstract

An advantageous method of fabricating lasers adapted for use in a multichannel analog optical fiber communication system, e.g., a CATV system, is disclosed. A laser generally can be used in such a communication system only if it meets, inter alia, very stringent intermodulation specifications. To identify such lasers typically requires extensive testing. It has now been discovered that certain readily determinable parameters can be used to predict the intermodulation behavior of a given device. This discovery makes possible a simpler, and therefore less costly, process of identifying suitable lasers, resulting in a more economical method of making lasers for the stated application. The method comprises measuring the light versus current (L versus I) characteristic of a given laser, determining therefrom the first, second, and possibly higher, order derivatives of L with respect to I, and determining thereform a parameter that is a predictor of the distortion behavior of the laser. Exemplarily, the quantity is the normalized second order distortion (2HD/C), defined as 20 log (mL'/4L'.sup.2), where m is the modulation index, and L' and L' are the first and second derivatives, respectively, of L. 2HD/C has a pronounced minimum at I=I.sub.op , the current at which L'=0. Advantageously, lasers are selected that have 2HD/C less than a predetermined value (e.g., -70 dbc, with m=0.04) over a relatively wide current range (e.g., at least 4 mA).


Find Patent Forward Citations

Loading…