The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 02, 1991
Filed:
Apr. 27, 1989
Chen-Chi P Chang, Newport Beach, CA (US);
Kuan Y Liao, Irvine, CA (US);
Joseph E Farb, Riverside, CA (US);
Other;
Abstract
Methods of fabricating heavily doped edges of mesa structures in silicon-on-sapphire and silicon-on-insulator semiconductor devices. The methods are self-aligning and require a minimum of masking steps to achieve. The disclosed methods reduce edge leakage and resolve N-channel threshold voltage instability problems. Mesa structures are formed that comprise N-channel and P-channel regions having a thermal oxide layer deposited thereover. A doping layer of borosilicate glass, or alternatively, an undoped oxide layer that is subsequently implanted, is deposited over the mesa structures. In the first method, the doping layer is etched by means of an anisotropic plasma etching procedure to form oxide spacers at the edges of the mesa structures. The doping layer is removed from the N-mesa structures using an N-channel mask and wet oxide etching procedure. The structure is then heated to a relatively high temperature to drive the dopant into the edges of the N-channel mesa structures. The protective layers are then removed by a wet etching procedure. The semiconductor device is fabricated to completion in a conventional manner thereafter. In the second method, a nitride layer is deposited over the mesa structures and thermal oxide layer. A thin oxide layer, which is generally deposited by means of a chemical vapor deposition procedure, is deposited over the silicon nitride layer. The formed structure is then processed to expose the N-channel mesa structures. This is accomplished using an N-well mask, the oxide layer is etched to expose the silicon nitride layer over the N-channel, and the nitride layer covering the N-channel is removed by means of hot phosphoric acid using the oxide layer as a mask. The doping layer is then deposited over the mesa structures. This doping layer is then heated to drive the dopant/implant into the edges of the N-channel mesa structures. The doping layer is then removed by wet oxide etching, the nitride layer is removed by rinsing in hot phosphoric acid and the thermal oxide layer is removed by a wet oxide etching procedure. The semiconductor device is again fabricated to completion in a conventional manner thereafter.