The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 26, 1991
Filed:
Jul. 24, 1989
Bernard Berkowitz, San Diego, CA (US);
Mark E Bonebright, La Mesa, CA (US);
William F McNaul, Ramona, CA (US);
Michael L Tentler, San Diego, CA (US);
Cubic Defense Systems, Inc., San Diego, CA (US);
Abstract
A system for correcting phase errors in a space based radar system utilizing probes located in front of an array of lens elements of a phased array antenna. Included is a mechanism for supplying a stored perfect value signal indicative of the distance between the probes and lens elements for a perfect, nondeformed array, and the mechanism for receiving radiated pilot signals to supply an actual value signal indicative of the actual distance between the probes and the lens elements to determine an amount of structural deformation. A mechanism is provided for measuring the difference in phase between the perfect value signal and the actual value signal to supply a deformation phase correction signal to adjust the beam steering command to correct for phase error introduced as a result of the measured structural deformation. Further disclosed is a system and method for effecting phase coherence across the array by utilizing a radiated reference pilot frequency pulse to each lens element. Any difference in phase between the measured reference pilot frequency pulse and a stored value is utilized to command a phase correction at each lens element utilizing a feedback loop for effecting phase coherence for the array, both on transmit as well as receive. Further disclosed is a method and system incorporating a digitally synthesized phase error correcting module with each lens element. In one embodiment, the correcting modules are dispersed among the lens elements utilizing an interpolation method for phase error correction.