The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 22, 1991
Filed:
Aug. 10, 1989
Masaharu Nishiura, Nagano, JP;
Kenya Sakurai, Matsumoto, JP;
Fuji Electric Co., Ltd., Kawasaki, JP;
Abstract
The present invention relates to a method of producing a metal-oxide semiconductor device with improved capacity for preventing an actuation of a parasitic bipolar transistor. In the present invention, a metal-oxide seminconductor device is produced through a process in which a single conductive semiconductor region with low-impurity density, on top of which region a gate electrode is provided via a gate-insulating film, consists of two sub-layers with different specific resistance. The upper sub-layer of the region has a significantly lower specific resistance than the lower sub-layer of the region. When a lifetime-reducing agent for reducing the reverse-recovery time of a built-in diode is diffused into the single conductive semiconductor region with low-impurity density, the lifetime-reducing agent concentrates in the upper sub-layer of the region, thereby increasing the specific resistance of the upper sub-layer. Because the specific resistance of the upper sub-layer is initially low, however, the increase in the specific resistance is compensated, and the on-resistance at the time of conduction of the metal-oxide semiconductor device does not increase as a whole. Consequently, the reverse-recovery time of the built-in diode is reduced without an overall increase in the on-resistance, thereby preventing an actuation of the parasitic bipolar transistor without additional power loss.