The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 04, 1990
Filed:
Jan. 25, 1990
Franz-Josef Carduck, Haan, DE;
Juergen Falbe, Neuss, DE;
Theo Fleckenstein, Hilden, DE;
Gerd Goebel, Erkrath, DE;
Joachim Pohl, Duesseldorf, DE;
Henkel Kommanditgesellschaft auf Aktien, Duesseldorf, DE;
Abstract
A process for the catalytic hydrogenation of butterfat where non-deacidified butterfat is continuously reacted with hydrogen under pressures of from 20 to 300 bar and at temperatures of from 180.degree. to 250.degree. C. with molar ratios of hydrogen to fatty acid residue in the butterfat of from 10:1 to 500:1. The reaction is carried out over catalysts which contain from 30 to 40% by weight copper, from 23 to 30% by weight chromium, from 1 to 10% by weight manganese, from 1 to 10% by weight silicon, and from 1 to 7% by weight barium. The percentages by weight in each case are based on the total oxidic mass of the catalyst. Other transition metals, especially zirconium and cerium, are additionally incorporated into the catalyst. The metals in the catalyst are converted to their oxides by calcination. The catalyst is converted into shaped particulate or granulated elements with from 1 to 10% by weight of at least one binder in addition to 1 to 10% by weight graphite. The catalyst is activated with hydrogen or a hydrogen-containing gas mixture. The reaction products include alcohols, oxo- and hydroxyfatty alcohols corresponding to the natural fatty acid composition of the butterfat and the desired, valuable product, propylene glycol. This process is advantageous since it eliminates the need for preseparation of the relatively short-chain fatty acids (or deacidification) of the butterfat prior to hydrogenation.