The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 26, 1990
Filed:
Dec. 28, 1988
Seigo Nishikawa, Kitakyushu, JP;
Shinji Okumura, Kitakyushu, JP;
Tadayuki Amano, Kitakyushu, JP;
Kazutoshi Hata, Kitakyushu, JP;
Kabushiki Kaisha Yaskawa Denki Seisakusho, Fukuoka, JP;
Abstract
A method is disclosed for correcting the travel path of an oscillating robotic welding torch tracing a groove line defined by an upper and lower plate. According to one aspect of the invention, a first integrated value of the welding current at the center of oscillation is compared with second and third integrated values of the welding current at opposite first and second ends of the oscillation, respectively. The travel path of the robotic welding torches adjusted towards the second end of oscillation when the second and third integrated values of the welding current are smaller than the first integrated value of the welding current. According to another aspect of the present invention, a first integrated value of the welding current at the second end of oscillation of a previous oscillation torch is compared with a second integrated value of the welding current at the second end of oscillation of a subsequent oscillation. The travel path of the robotic welding torch is adjusted towards the second end of oscillation when the difference between the first and second integrated value exceeds a predetermined allowable value. According to yet another aspect of the present invention, an integrated value of the welding current at the second end of oscillation is compared with an average integrated value of the second end of oscillation. The average integrated value at the second end of oscillation being a value resulting when the robotic vehicle correctly traverses the groove line. The travel path is adjusted towards the second end of oscillation when the difference between the first and average integrated values exceeds a predetermined allowable deviation value.