The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 19, 1990
Filed:
Dec. 09, 1988
Bernard H Soffer, Pacific Palisades, CA (US);
Yuri Owechko, Newbury Park, CA (US);
Hughes Aircraft Company, Los Angeles, CA (US);
Abstract
An apparatus and method for processing optical beams designed to adaptively spatially threshold or filter an intensity histogram spectrum for re-transformation to a two-dimensional thresholded optical output. Such apparatus and method is used in optical computing and logic processing to selectively pass only certain light intensities, thereby blocking undesirable background noise while passing the desired signals. An incoming histogram light beam, containing an optical position distribution corresponding to the intensity distribution of an original optical beam, is split into first and second beams. The first beam is directed at a light detector array which transforms the optical position intensities of the first bema into directly proportional electrical signals. These signals are sent to a microprocessor which analyzes this input, determines the intensity distribution, calculates the algebraic mean and variance, sets the intensity threshold level based on pre-set information, and sends an electronic voltage signal to an optical selective reflector. The optical reflector, preferably a CCD LCLV, is positioned to receive the second split beam, and is instructed by the electronic voltage signal to selectively reflect only certain optical intensities onto an inverse Fourier transform lens. This lens re-transforms the quasi-one-dimensional second split beam into the desired two-dimensional thresholded optical output.