The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 05, 1990

Filed:

Jan. 15, 1988
Applicant:
Inventor:

James C Chien, Amherst, MA (US);

Assignee:
Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
C01B / ; C01F / ; C01G / ; C04B / ;
U.S. Cl.
CPC ...
505-1 ; 252500 ; 252512 ; 252518 ; 423604 ; 423635 ; 427226 ; 505734 ; 505785 ;
Abstract

Process for producing metal oxide superconductor (MOS)-polymer (P) composites by (i) mixing a monomer and initiator with MOS followed by in-situ polymerization of the monomer, (ii) mixing MOS with a polymer solution followed by removal of solvent, (iii) blending MOS with a molten polymer and processing the MOS-P composite obtained by processes (i), (ii), or (iii) by extrusion or molding, and (iv) mixing MOS with monomers or prepolymers with or without catalysts to give MOS-P composite through reaction-processing, the polymers being one of all thermoplastic and thermoset resins, thermoplastic elastomers, or elastomers, the last with or without crosslinks. The MOS powdery materials are obtained by conventional ceramic technology or grinding the constituent metal oxides, sesquioxides, carbonates and nitrates and calcination, or MOS having free-standing continuous morphology obtained by the polymer precursor process disclosed herein or MOS with grafted polymer chains which is compatible or further grafted to the polymers of the composite. , process for producing metal oxide superconductors (MOS) having free-standing continuous morphology through a polymer percursor method that includes (A) forming a solution of at least one metal ion complex of a polymer or copolymer in an organic solvent, (B) spinning into fiber or casting into film, (C) degradation of the polymer, and (D) oxidative calcination to obtain MOS having free-standing continuous morphology, the polymers having a backbone structure known to depolymerize or otherwise pyrolyze cleanly to volatile products above certain temperatures and containing one or more pendant groups which could complex or chelate metal ions by ionic or polar interactions. The metal elements are selected from the groups 2a, 3b and 1b of the Periodic Table and the metal-polymer complex is homogeneous and soluble in common polar organic solvent. An important example of product is a free-standing oxygen deficient perovskite Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.x, synthesized from polymer precursors and having a uniform crystalline morphology with connected frit texture. The decrease of resistivity with temperature is perfectly linear, the onset of T.sub.g occurs at 92.4K and .DELTA.T.sub.c (90%-10%) is .about.1K and the material can be made in thin file or fiber form. Superconductive polymer composite has been obtained by filling the void or the material with monomer and initiator followed by polymerization of the occluded monomer.


Find Patent Forward Citations

Loading…