The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Mar. 20, 1990

Filed:

Feb. 15, 1989
Applicant:
Inventors:

Hiroyuki Ohtsuka, Kanagawa, JP;

Hideaki Matsue, Kanagawa, JP;

Tadashi Shirato, Tokyo, JP;

Takehiro Murase, Kanagawa, JP;

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H04B / ;
U.S. Cl.
CPC ...
329316 ; 329320 ; 375102 ; 455295 ; 455306 ;
Abstract

In a digital demodulation system (FIGS. 2, 3, 4, 7, 8) in a dual polarization radio system, having a first demodulator (4) and a first A/D converter (14) for a main signal, a second demodulator (5) and a second A/D converter (15c) for an interference signal (cross polarization signal), a transversal filter (18) for providing a compensation signal for cancelling an interference component in the main signal depending upon the demodulated interference component; the second A/D converter (15c) for providing the interference component in digital form is operated with a clock signal (102) regenerated in the main signal branch (4, 14) so that system operates correctly even when the main signal and cross polarization signal are in an asynchronous condition. The A/D converter (14, 15c, 105) is provided with an attenuator (104) for compressing amplitude of an input signal to avoid saturation of the circuit (105) in case of fading and/or distortion, and a ROM table (107) for correcting digitalized output after equalization and/or cancellation. Tap coefficients of the transversal filter (18) are obtained by a control (19) through a ZF method when inter-symbol interference is small, and a MLE method when inter-symbol interference is large. Further, an integration constant for the coefficients is adaptive depending upon inter-symbol interference.


Find Patent Forward Citations

Loading…