The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 16, 1990
Filed:
Nov. 17, 1987
Robert E Dawson, Rydel, PA (US);
Other;
Abstract
This disclosure describes collectors of solar and other types of radiant energy that are inexpensive and of simple design yet capable of capturing radiation with high levels of efficiency as the incident angle of radiation varies. In a preferred embodiment, a lens extending across the mouth of a bowl-like reflector and around its central axis causes rays entering the lens at an angle to the axis on the side of the lens closest to the energy source to refract and pass directly from the lens to the absorber and causes other similarly angled rays entering and departing the lens on the other side of the axis to refract in an upward direction as they pass to the reflector and then to the absorber, i.e., upward as compared to the extended traces of the incident rays. The reflector and an absorber within it, both shaped and spatially related to cooperate with the lens, capture major proportions of refracted radiation as the angle of incidence changes, thus minimizing energy losses that could otherwise occur through re-reflection of rays from the reflector and out through the lens. Also disclosed are improvements, in absorber-reflector-lens combinations, including polygonal, segmented reflector walls, sectored lenses and lenses with bi-directionally divergent prismatic elements for emitting rays from the lenses to the reflectors and absorbers with both vertical and horizontal refraction vectors which can assist in reducing re-reflection energy losses and in spreading incident rays across the available surface areas of the absorbers.