The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 10, 1989
Filed:
Sep. 09, 1988
Rudolf E Grosskopf, Koenigsbronn, DE;
Carl-Zeiss-Stiftung, Heidenheim/Brenz, DE;
Abstract
A microscope with convolution wherein the light distribution is modulated within the space of double light cones generated by the optics of the microscope. The modulation is accomplished in space domain as opposed to modulation in the time domain used in radio frequency electronics. Light radiation is modulated by placing a modulation pattern in one of the planes of the microscope where the illumination source is focused. The modulated light passes through the other sections of the microscope after which time it strikes a target of a TV camera tube. The output of the TV tube is then fed into a computer. In the object of the microscope there are, for example, 64 consecutive object positions at which 64 consecutive focused images of the object can be formed so as to generate digitized images in the computer. The pattern from which the image is formed is stored in a memory and then reconvolved using an algorithm which constructs a reconvolution of the object by sensing the presence and absence of the hollow sections of the light modulated cones. The algorithm takes into account the modulating pattern and the quality of the image generated within the microscope optics. To match the algorithm with the modulating pattern or patterns used in the microscope a matrix of data representing a three-dimensional pulse response function is generated using a Fourier transformer or any other convolving algorithm. This data matrix takes into account the behavior of the optics of the microscope and is converted by a reconvolving algorithm into improved images. These images have a superior 3-D resolution not achievable with the same speed by other methods.