The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 19, 1989
Filed:
Oct. 29, 1987
Herb S Madan, Marina del Rey, CA (US);
Edward Chow, San Dimas, CA (US);
Abstract
A fault-tolerant multi-processor computer system of the hypercube type comprising a hierarchy of computers of like kind which can be functionally substituted for one another as necessary. Communication between the working nodes is via one communications network while communications between the working nodes and watch dog nodes and load balancing nodes higher in the structure is via another communications network separate from the first. A typical branch of the hierarchy reporting to a master node or host computer (50) comprises, a plurality of first computing nodes (22); a first network of message conducting paths (30) for interconnecting the first computing nodes (22) as a hypercube (28'), the first network (30) providing a path for message transfer between the first computing nodes (22); a first watch dog node (40); and, a second network of message conducting paths (34) for connecting the first computing nodes (22) to the first watch dog node (40) independent from the first network (30), the second network (34) providing an independent path for test message and reconfiguration affecting transfers between the first computing nodes (22) and the first switch watch dog node (40). There is additionally, a plurality of second computing nodes (22); a third network of message conducting paths (30) for interconnecting the second computing nodes (22) as a hypercube (28'), the third network (30) providing a path for message transfer between the second computing nodes (22); a fourth network of message conducting paths (34) for connecting the second computing nodes (22) to the first watch dog node (40) independent from the third network (30) the fourth network (34) providing an independent path for test message and reconfiguration affecting transfers between the second computing nodes (22) and the first watch dog node (40); and, a first multiplexer disposed between the first watch dog node (40) and the second and fourth networks (34) for allowing the first watch dog node (40) to selectively communicate with individual ones of the computing nodes (22) through the second and fourth networks (34); as well as, a second watch dog node (40) operably connected to the first multiplexer whereby the second watch dog node (40) can selectively communicate with individual ones of the computing nodes (22) through the second and fourth networks (34). The branch is completed by a first load balancing node (