The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 05, 1989
Filed:
Feb. 17, 1987
Cardinal Warde, Newtonville, MA (US);
Robert F Dillon, Stoneham, MA (US);
Brian A Hill, Dedham, MA (US);
Optron Systems, Inc., Waltham, MA (US);
Abstract
The disclosed charge transfer signal processor includes a vacuum housing having an input face and an output face, a 2-D electromagnetic input means cooperative with said input face for providing a 2-D input electronic charge signal within the vacuum housing, transfer means for imaging the 2-D input electronic charge signal in a region of the vacuum housing proximate the vacuum housing output face, and charge feedthrough means coupled to the vacuum housing output face for transferring the imaged 2-D electronic charge signal externally to the vacuum housing. In one embodiment, the charge transfer signal processor is operable as Gen-1 charge transfer amplifier. In another embodiment, a microchannel plate assembly is disposed in the vacuum housing intermediate the input and output faces, and the charge transfer signal processor is operable as a high-gain charge transfer signal amplifier. In a futher embodiment, a power microchannel plate assembly is disclosed that is disposed in the vacuum housing intermediate the input and output faces, and the charge transfer signal processor is operable as a high-current charge transfer signal amplifier. The disclosed power microchannel plate assembly preferably includes a 2-D array of axially-aligned discrete dynodes, and a voltage divider network operatively coupled to the 2-D array for providing an electron accelerating potential gradient and for replacing charge as it is depleted by secondary electron emission processes in the several discrete dynodes. The 2-D input electromagnetic signal may either be optical, electronic, or a combination of these two. Various output devices externally mounted to the output face of the vacuum housing are disclosed. Utility includes spatial phase and/or amplitude light modulation, 2-D optical signal processing, and, among others, electromagntic signal detection. A method and an apparatus are disclosed for fabricating the charge feedthrough means.