The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 24, 1989
Filed:
Aug. 18, 1986
Robert E Smith, Edmonds, WA (US);
Physio-Control Corporation, Redmond, WA (US);
Abstract
The present invention relates to the processing of signals containing information about the pulse rate and oxygen saturation of arterial blood flowing in tissue. These signals have a relatively periodic pulsatile component superimposed upon a varying baseline component. To determine the pulse rate and oxygen saturation from the signals, the positive peaks, negative peaks, and period of the signal must be determined. The present invention accomplishes this by first searching for a sustained positive sloping region of the signal. Then the first derivative of the signal with respect to time is analyzed and points on the signal before and after the occurrence of a slope reversal marked. If the slope at the first point is positive, the interval between the two points is searched for a maximum amplitude that is identified as a positive peak. After the occurrence of a negative sloping region of the signal, another pair of points are marked occurring before and after a subsequent slope reversal. The minimum amplitude of the signal between these points is then identified as a negative peak. For improved accuracy, these positive and negative peaks are then compared with waveform templates to determine whether the amplitude between the peaks falls within an allowable range and to determine whether the interval between the peaks likewise falls within an acceptable range. These ranges are adjustable in proportion to the amplitude and interval compared against them. In this manner, values for the positive peak, negative peak, and period of the signal can be determined with high reliability.