The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 13, 1988
Filed:
Sep. 02, 1986
Sanders Associates, Inc., Nashua, NH (US);
Abstract
A system (34) for determining deviations in the state of motion of a projectile (10) from its intended state includes a comparison module (38) that receives the outputs S of a sensor array (36). The comparison module (38) converts the sensor outputs to a measurement vector Z.sub.m and computes the deviation of this measurement vector from an intended measurement vector Z.sub.0 received from a control system. The comparison module (38) then determines the difference E.sub.Z between this measured deviation and the deviation predicted by a Kalman filter (44, 46). In generating the measurement vector Z.sub.m from the outputs of the sensor array (36), the comparison module (38) 'de-spins' the array outputs in accordance with the output of a phase reference (42), whose purpose is to indicate the phase with respect to gravity of the spin of the projectile (10) about its longitudinal axis. The Kalman filter's state-deviation estimator (46) weights the vector output of the comparison module (36) and adds it to the output of the Kalman filter's state-deviation predictor (44) to provide an updated state-deviation estimation E.sub.X (t:t), which the state-deviation predictor (44) then uses as a basis for its next cycle. The output of the comparison module (38) constitutes a measure of the performance of the state-deviation predictor (44) and is used as a correction factor for the phase reference (42) so that the system acts as a phase-locked loop to lock the phase reference (42) onto the projectile spin without the need for an external sensor to determine the direction of gravity.