The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 29, 1988
Filed:
Nov. 27, 1985
Robert P Lyons, Middlesex County, NJ (US);
John M Palmquist, Gwinnett County, GA (US);
Susan S Sachs, Middlesex County, NJ (US);
Ralph A Treder, Jr, Mercer County, NJ (US);
Thomas L Williford, Jr, Gwinnett County, GA (US);
American Telephone and Telegraph Co., AT&T Bell Labs, Murray Hill, NJ (US);
AT&T Technologies, Inc., Berkeley Heights, NJ (US);
Abstract
A biconic connector (40) includes two plugs (44-44) each of which terminates a single fiber optical cable (55) and each of which includes a truncated conically shaped end portion (50). The connector also includes an alignment sleeve having back-to-back conically shaped cavities each of which is adapted to receive an end portion of a plug. In order to minimize loss through the connection, it becomes important for the centroid of the cross-sectional area of a light beam in the end face of the plug to be coincident with the axis of revolution of the conically shaped surface of plug. This is accomplished by holding the plug in a fixture such that its end portion is exposed and the fixture adapted to be turned about an axis of rotation. Images of a light beam launched into the optical fiber are acquired in a plane through the end face of the plug. From these, the axis of rotation is determined and adjustments made to cause the centroid of the acquired images to become substantially coincident with the axis of rotation of that plane. Subsequently, the molded plug is reconfigured such as by grinding to cause the centroid of the cross-sectional area of the light beam in the end face of the plug to be disposed along the axis of revolution of the conical surface of the reconfigured plug.