The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Sep. 27, 1988

Filed:

Mar. 04, 1987
Applicant:
Inventor:

Wilfried Juergens, Munich, DE;

Assignee:

Siemens Aktiengesellschaft, Berlin and Munich, US;

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H01L / ;
U.S. Cl.
CPC ...
437-4 ; 437229 ; 437923 ; 437939 ; 437-2 ; 136258 ; 136290 ; 430313 ;
Abstract

A method for avoiding shorts between two separated layer electrodes in a layered electrical component, such as a solar cell having amorphous silicon layers, includes the steps of generating a first electrode layer on a substrate, generating an intermediate non-electrode layer, which may possibly have voids therein, over the first electrode, and generating a photo-resist layer on the intermediate layer which fills any voids which may exist in the intermediate layer. The substrate and the first electrode layer are transmissive for selected radiation, and the intermediate layer is non-transmissive for the selected radiation. The photo-resist is exposed in the voids by irradiation with the selected radiation through the substrate and the first electrode layer, so that the exposed photo-resist in the voids has a different solubility than the unexposed remainder of the photo-resist. If the photo-resist is of the type such that irradiation polymerizes the exposed photo-resist, a polymerized plug will be present in any voids which may exist in the intermediate layer, so that when a second electrode layer is subsequently applied over the intermediate layer, no shorts will result through the voids. If the photo-resist is of the opposite type, the soluble photo-resist is removed from the voids, leaving a mask of polymerized photo-resist over the intermediate layer, and the voids are filled using the mask with an insulating material. The photo-resist mask is then removed and the second electrode layer is generated over the intermediate layer, with the insulating plugs again preventing the formation of shorts through the voids.


Find Patent Forward Citations

Loading…