The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Sep. 20, 1988

Filed:

Mar. 13, 1987
Applicant:
Inventors:

David W Mace, Elgin, IL (US);

Donald O Myers, Carpentersville, IL (US);

Assignee:

Motorola, Inc., Schaumburg, IL (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
B32B / ; H01L / ;
U.S. Cl.
CPC ...
428630 ; 428666 ; 428672 ; 428680 ; 357 26 ; 357 68 ; 357 74 ;
Abstract

A technique for metallizing a substrate while providing stress relief for the metallization on the substrate is disclosed. Chrome conductive metallization (22) is deposited on a top surface (21) of an insulating glass substrate (20). An interior gold conductive metallization (23) is deposited on the chrome, and metallization (24) having a substantial nickel composition is deposited on the gold. Subsequently, an additional outer gold metallization (25) is provided on the nickel, and solder is provided on the additional gold metallization. Prior to the application of solder to the outer gold layer 25, the metallization layers are subjected to anodic bonding temperatures and voltage potentials. The gold layer between the nickel and chrome layers diffuses along the grain boundaries of the nickel and chrome layers, thus reducing the ability to transmit stress through these metallizations induced by the solder. The present metallization structure prevents solder-induced stress from rupturing either the bond between the chrome layer and glass substrate or the glass substrate. This allows application of a relatively thick layer of chrome to glass sufficient such that chrome can be deposited in feedthrough holes (31, 32) in the glass. Preferably, such a metallization technique is utilized for manufacturing a silicon capacitive pressure sensor (30).


Find Patent Forward Citations

Loading…