The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 13, 1988
Filed:
Dec. 23, 1986
William D Fender, Pasadena, CA (US);
Robert C Speiser, Altadena, CA (US);
Gerhard K Kramer, Monrovia, CA (US);
Hans P Ceelen, Upland, CA (US);
Xerox Corporation, Stamford, CT (US);
Abstract
An electrophotographic imaging member comprising providing a conductive substrate, an alloy layer comprising selenium doped with arsenic having a thickness of between about 100 micrometers and about 400 micrometers, the alloy layer comprising between about 0.3 percent and about 2 percent by weight arsenic at the surface of the alloy layer facing away from the conductive substrate and comprising crystalline selenium having a thickness of from about 0.01 micrometer to about 1 micrometer contiguous to the conductive substrate, and a thin protective overcoating layer on the alloy layer, the overcoating layer having a thickness between about 0.05 micrometer and about 0.3 micrometer and comprising from about 0.5 percent to about 3 percent by weight nigrosine. This photoreceptor is prepared by providing a conductive substrate, cleaning the substrate, heating an alloy comprising selenium and from about 0.05 percent to about 2 percent by weight arsenic until from about 2 percent to about 90 percent by weight of the selenium in the alloy is crystallized, vacuum depositing the alloy on the substrate to form a vitreous photoconductive insulating layer having a thickness of between about 100 micrometers and about 400 micrometers containing between about 0.3 percent and about 2 percent by weight arsenic at the surface of the photoconductive insulating layer facing away from the conductive substrate, applying thin protective overcoating layer on the photoconductive insulating layer, the overcoating layer having a thickness between about 0.05 micrometer and about 0.3 micrometer and comprising from about 0.5 percent to about 3 percent by weight nigrosine, and heating the photoconductive insulating layer until only the selenium in the layer adjacent the substrate crystallizes to form a continuous substantially uniform crystalline layer having a thickness up to about one micrometer.