The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 12, 1988
Filed:
Dec. 09, 1985
Herbert R Jones, Williston, VT (US);
McDonnell Douglas Corporation, St. Louis, MO (US);
Abstract
A method and apparatus is provided for determining remote object orientation and position with an electromagnetic coupling. A plurality of radiating antennas are provided for radiating electromagnetic energy. Each of the radiating antennas have independent components for defining a source reference coordinate frame. A transmitter is provided for applying electrical signals to the radiating antennas for generating a plurality of electromagnetic fields. The signals are multiplexed so that the fields are distinguishable from one another. A plurality of receiving antennas are disposed on a remote object for receiving the transmitted electromagnetic fields. The receiving antennas have a plurality of independent components for detecting the transmitted electromagnetic fields and defining a sensor reference coordinate frame. An analyzer is provided for receiving the output of the receiving antennas and converting the components of the transmitted electromagnetic fields into remote object position and orientation relative to the source reference coordinate frame. The analyzing means includes means for processing the components of the electromagnetic fields independently into remote object position in cartesian coordinates and remote object orientation using a quaternion processing strategy. The processing technique provides an uncoupled, noniterative, closed form solution for both position and orientation which is fast and continuous. Further, in the case where dipole antennas are used and the size of the antennas is significant relative to the separation distance between the radiating and receiving antennas, an aperture compensation technique is provided for compensating for distortion in the dipole fields. Still further, the processing technique provides an arrangement for smoothing or filtering the solution for position and orientation by blending previous solutions into the current solution.