The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 30, 1987
Filed:
Oct. 09, 1985
Edwin D Trautman, Newton, MA (US);
Ronald S Newbower, Acton, MA (US);
Massachusetts General Hospital, Boston, MA (US);
Abstract
Patient monitoring method and apparatus for measurement of in vivo extra vascular lung water (pulmonary edema) and pulmonary circulatory system thermal bypass utilizing double indicator dilution with temperature and electrical conductivity modifiers. A thermal modifier is utilized for a primary indicator dilution measurement with electrical conductivity provided as a reference indicator which in turn is corrected for temperature effects produced by the thermal moderator as well as effects of plasma characteristics. Thermal and conductivity sensors are both placed upstream and downstream of the lungs in the pulmonary artery and thesystemic arterial system, and a thermal and conductivity moderator is injected at a site upstream from both. Temperature and conductivity are detected at both sites and the conductivity signal is converted to a volume dilution valve. Lung water is then determined as a function of the mean transit time difference of the two sensed temperatures less the mean transit time difference for the two conductivity based volume dilutions. Because the measurement is based on four sensors and mean transit time differences are used, in vivo error sources merely act as more signal and do not affect the final values. The detected signals are also analyzed in a manner to yield information on thermal bypass. The measurement technique disclosed is useful in correcting the effects of a conductivity indicator for thermal and blood effects however employed.