The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 07, 1987
Filed:
Jul. 29, 1985
Edward S Kirkpatrick, Croton-on-Hudson, NY (US);
Eric P Kronstadt, Hartsdale, NY (US);
Robert K Montoye, Peekskill, NY (US);
Winfried W Wilcke, Yorktown Heights, NY (US);
International Business Machines Corporation, Armonk, NY (US);
Abstract
An improved testing and checking circuit for a Differential Cascode Voltage Switch which uses N-devices for both the invalid (0,0) and (1,1) state detection of Q and Q switch signals, and uses decoupling pass devices for sampling the data at the fall of the system C-clock, additionally allowing simultaneous pre-charging and error detection. The testing and checking circuit is incorporated in a hierarchical scheme, which uses the system C-clock for input to the latches, decoupling of the buffers, and pulling up and down the error lines. The error fault is held in a system latch. Also described is a circuit scheme which self tests a large macro using only the C-clock and latches the result in a single latch. More particularly, the described circuit employs the Q and Q signals in a NOR configuration, thus detecting if neither signal has sufficient voltage to pull down the load device which consists of a P-device whose gate is attached to the C-clock. The resulting signal is run to a gate in parallel with the two N-devices. Thus, the two low signals allow this NOR gate to rise and produce a pulldown leg to an error line. An invalid signal condition is detected if either both signals are sufficiently high to turn on an N-device or neither signal is high enough to turn on an N-device. Therefore, the described circuit registers a failure if and only if there is the potential for a tree with the same inputs to enter an invalid state.