The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 21, 1986
Filed:
Jan. 19, 1984
Hideo Tsukune, Kashiwa, JP;
Keisuke Goto, Tokyo, JP;
Abstract
In order to define the contour of an ellipse, it is necessary to determine five unknown parameters in the general equation representative of centered conics. When directly applying Hough transformation method to the above equation, since a five-dimensional space is required, it is practically impossible to detect an ellipse because a long processing time and a great amount of memory capacity are inevitably required. To overcome these problems, the geometric properties of an ellipse are determined separately on three parameter sub-spaces obtained on the basis of edge vector field: two-dimensional center histogram and two-dimensional (H, B) histogram, one-dimensional C histogram. A peak value on the center histogram represents a group of ellipse having the same center locations; a peak value on the (H, B) histogram represents a group of concentric ellipse having the same eccentricity and axis slope; a peak value on the C histogram defines a single ellipse. By sequentially selecting these peaks in the three sub-spaces, it is possible to define geometric properties of an ellipse under practical processing conditions. In order to define a plurality of ellipses efficiently, several novel methods have been adopted: separation of the rotation directions of edge vector field, recovery of edge vectors having no mate edge vectors; adoption of least mean square method, etc., in particular.