The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 23, 1986
Filed:
Apr. 11, 1984
Gerhard Brumme, Eching, DE;
Ludger Grage, Eichenau, DE;
Hinrich Heynisch, Grafelfing, DE;
Erwin Hubner, Grafing, DE;
Siemens Aktiengesellschaft, Berlin and Munich, DE;
Abstract
A transversely excited gas laser, includes: an elongated gas-filled discharge chamber having an optical axis; a main cathode electrode and a main anode electrode extended along the optical axis in the discharge chamber defining a main discharge space between the main cathode and the main anode electrodes through which the optical axis extends, the main electrodes bordering two sides of the main discharge space leaving two other sides open; two pairs of auxiliary electrodes each being extended parallel to the optical axis in vicinity of a respective one of the open sides of the main discharge space and mutually spaced apart by a given distance, each of the auxiliary electrodes including a conductor and a dielectric shell surrounding the conductor, each of the auxiliary electrodes being spaced from all of the other electrodes by a set breakdown distance; and a driving unit connected to the electrodes, the driving unit supplying different potentials to the main cathode and main anode electrodes producing a main electric discharge therebetween during operation of the gas laser, and the driving unit supplying different potentials to the pairs of auxiliary electrodes causing a corona discharge preionizing the gas in the main discharge space to take place therebetween across the given distance during operation of the gas laser.