The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Dec. 24, 1985

Filed:

Apr. 18, 1983
Applicant:
Inventors:

Yoshikazu Nishiwaki, Osaka, JP;

Shunji Matsuoka, Osaka, JP;

Kenji Okamoto, Osaka, JP;

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G02B / ;
U.S. Cl.
CPC ...
35016217 ; 350-37 ; 3501622 ;
Abstract

A method for making a diffraction grating utilizing a laser source, a beam splitter to split the light from the laser source into two light fluxes, a collimator to convert each light flux into a light flux which is parallel and enlarged in diameter, a mirror to irradiate each light flux on a substrate coated with a photoresist, and a photomask on the photoresist. The use of an intermediate mask and focusing leans enables the formation of a diffraction grating within a limited area. A blazed diffraction grating may be formed by splitting a laser beam into two beams having an increased beam radius, and irradiating a light-sensitive material with the resulting two beams to form an interference fringe. This method is characterized in that in a first exposure the two beams are incident on the light sensitive material through air to form an interference fringe having a clearance width of d, and in a second exposure, the two beams are irradiated on the light sensitive material through a symmetrical transparent member having an isosceles triangular cross section in such a manner that the origin coincides to form an interference fringe having a clearance width of d/2, and furthermore, in that the ratio of the first exposure energy to the second exposure energy is made equal to the ratio of the first term to the second term of a Fourier series obtained by expanding the periodical function of the waveform of the blazed diffraction grating.


Find Patent Forward Citations

Loading…