The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Sep. 17, 1985

Filed:

Jan. 13, 1984
Applicant:
Inventors:

Howard L Mitchell, III, Metairie, LA (US);

Willard H Sawyer, Baton Rouge, LA (US);

Assignee:

Exxon Research and Engineering Co., Florham Park, NJ (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
B01J / ; B01J / ; B01J / ; C01G / ;
U.S. Cl.
CPC ...
502220 ; 502162 ; 502164 ; 502200 ; 502222 ; 423 56 ;
Abstract

A process for the preparation of novel highly active, highly selective hydrotreating catalysts. These catalysts are prepared, in bulk or in supported form, from a catalyst precursor characterized by the formula B.sub.x [Mo.sub.3 S.sub.z ] where B is an ammonium ion, polyammonium ion, tertiary or quaternary phosphonium ion, or a hydrocarbyl substituted ammonium ion, hydrocarbyl substituted polyammonium ion, or hydrocarbyl substituted tertiary or quaternary phosphonium ion, x is 1 where B is a divalent cationic moiety, or 2 where B is a monovalent cationic moiety, [Mo.sub.3 S.sub.z ] is a divalent anionic moiety wherein z is an integer greater than 15. The catalyst precursor is dispersed in an ammonium sulfide or dilute ammonium polysulfide solution and heated to remove sulfur from said catalyst precursor to provide a z value of 15 or less. Carbon is also removed from the catalyst precursor and, where B of the B.sub.x [Mo.sub.3 S.sub.z ] catalyst precursor is a non-carbon containing moiety, the finished catalyst will contain an atomic ratio of C/Mo of less than about 0.05. Decomposition of the catalyst precursor in the presence of hydrogen, hydrocarbon and sulfur forms the highly active hydrotreating catalyst.


Find Patent Forward Citations

Loading…