The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Aug. 27, 1985

Filed:

Jun. 27, 1983
Applicant:
Inventors:

Joe M Walker, Pittsburg, KS (US);

Thomas M Potts, Miami, OK (US);

Assignee:

Eagle-Picher Industries, Inc., Cincinnati, OH (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
C01B / ;
U.S. Cl.
CPC ...
423349 ; 423347 ; 55 67 ;
Abstract

Elemental silicon is produced by a process and apparatus wherein relatively impure silane (SiH.sub.4) is purified in the gaseous state, while mixed with an inert carrier gas, to a content of electronically active impurities which is no higher than that of 'electronic grade' silicon. The silane so purified is then thermally decomposed to form elemental silicon of electronic grade purity, without need for further purification of the elemental silicon itself. The silane purification is carried out by injecting the impure silane gas as a series of timed, spaced pulses into a carrier gas stream which transports the silane pulses to a gas chromatographic column, through which the pulses flow in sequence. The column has a porous polymer or a molecular sieve packing which is specially preconditioned to achieve high resolution separation of the components of the feed. The components of each pulse are differentially retarded by this packing so that they move through the column at different rates, as a result of which they exit at different but precisely spaced time intervals in relation to pulse input time. The emergence from the column of the silane 'peak' or portion of the respective pulse is detected individually or is timed from the pulse input. When detected or timed, the eluent silane peak and admixed carrier gas are valved to a receiver separately from the other components, which exit before and after that peak. The silane gas fraction of the peak is then thermally decomposed, to form elemental silicon which is of electronic purity, or it may be collected and pressurized before thermal decomposition. The admixed carrier gas is not decomposed, remains a gas, and thereby is separated from the silicon. Depending on the extent to which the gas purification is carried, the product silicon may have a measured resistivity of about 1500 ohms cm or better, and can be used in fabrication of solar cells or semiconductor device without further purification.


Find Patent Forward Citations

Loading…