The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 18, 1985

Filed:

Feb. 08, 1982
Applicant:
Inventors:

Haruo Sakaguchi, Tanashi, JP;

Norio Seki, Tokyo, JP;

Shu Yamamoto, Chofu, JP;

Akira Okada, Tokyo, JP;

Attorneys:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G02B / ;
U.S. Cl.
CPC ...
350 9612 ; 350 9611 ; 350 9620 ;
Abstract

A mount arrangement of a semiconductor laser and an optical fiber as a unitary structure. A substrate has a submount disposed thereon mounting a semiconductor laser. The laser is fixed on the submount by a fusion-welding material. A fiber submount is disposed on the substrate in the vicinity of the semiconductor laser submount. An optical fiber is fixed to the fiber submount with its optical axis coaxial with the optical axis of the output light of the semiconductor laser. The fiber submount includes a material for fixing the optical fiber and has a melting point such that it will not affect the coaxial optical alignment of the semiconductor laser and the optical fiber and the fixing between the substrate, the laser submount and between the laser submount and semiconductor laser during fabrication. The thickness of the semiconductor laser submount and the fiber submount are selected in terms of the interrelation between the coefficients of linear thermal expansion of the materials forming them and the coefficient of linear thermal expansion of the optical fiber from the substrate, which are caused by temperature variations in a range including temperature variations during fabrication, are substantially equal to each other and displacement between the optical axes of the light output of the laser and optical fiber is avoided. The retention of the axes coaxial alignment minimizes reduction of the efficiency of the coupling of the optical fiber to the semiconductor laser.


Find Patent Forward Citations

Loading…