The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Apr. 09, 1985

Filed:

Feb. 08, 1983
Applicant:
Inventors:

Stephen R Barnes, Seattle, WA (US);

Gary L Tarbox, Seattle, WA (US);

Lee L Huntsman, Bainbridge Island, WA (US);

Barry D McLaren, Auburn, WA (US);

Assignee:

Lawrence Medical Systems, Inc., Redmond, WA (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
A61B / ;
U.S. Cl.
CPC ...
128663 ; 128713 ;
Abstract

A method and system for the noninvasive measurement of cardiac output of a mammalian patient on a real time, beat-by-beat basis as a combined function of the cross-sectional area of the ascending aorta and the systolic velocity of blood flow therethrough is comprised of the steps of and apparatus for pulsedly insonifying the ascending aorta of the patient with repetitive, intermittent ultrasonic energy propagating through the patient's cardiac window; receiving pulses of ultrasonic energy reflected from the anatomical structure within the first insonification zone, including energy reflected from the aortic walls and characteristic of the dimensional separation thereof; developing an aortic diameter signal indicative of dimensional separation; computing the cross-sectional area of the ascending aorta therefrom; then continuously insonifying the ascending aorta with uninterrupted ultrasonic energy; receiving a Doppler-shifted ultrasonic energy signal reflected from pulsatile blood flow through the ascending aorta, and characteristic of systolic velocity of blood flow; subjecting the systolic velocity signal to a frequency spectrum analysis at a predetermined signal sampling rate to yield a velocity component profile signal; integrating the velocity component profile signal over time; computing systolic volume as a combined function of cross-sectional area and the systolic velocity integral for each of n cardiac cycles; and, computing cardiac output as the time-averaged sum of systolic volumes for the n periods.


Find Patent Forward Citations

Loading…