The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 12, 1985
Filed:
Mar. 16, 1984
Kwang K Kim, Poughkeepsie, NY (US);
International Business Machines Corporation, Armonk, NY (US);
Abstract
A minimal corrosion resistor structure and deposition technique for superconductive circuits, with mutually protective niobium oxide passivation ring, gold corrosion barrier film and titanium resistive layer. Niobium has an intrinsic oxide of Nb.sub.2 O.sub.5, which must be removed from a contact area designated by an opening in photoresist; the development process leaves a photoresist overhang. The corrosion barrier film is deposited through the opening. The resistive metal layer is deposited over the corrosion barrier film through the same opening. The gold corrosion barrier film prevents the titanium resistive metal layer from making corrosive contact with the niobium. The titanium resistive metal layer encapsulates the gold corrosion barrier film to prevent diffusion between the gold and further layers to be deposited subsequently. It would normally be possible for the titanium to spill over the gold and make corrosive intimate contact with the niobium; a self-alignment technique prevents such contact. The gold corrosion barrier film is sharply focused to form an area corresponding to the opening in the photoresist. An unfocused plasma oxidation step, which follows the gold deposition, grows an extrinsic Nb.sub.2 O.sub.5 passivation ring about the gold. The titanium resistive metal is then deposited with a wider focus than that of the gold corrosion barrier film, through the same opening; the titanium resistive metal layer deposits over the edge of the gold, encapsulating the gold with a diffusion barrier.