The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 18, 1984
Filed:
Mar. 01, 1982
James R Hurley, Brookfield, WI (US);
Clyde Gilker, Milwaukee, WI (US);
McGraw-Edison Company, Rolling Meadows, IL (US);
Abstract
The electronic watt-hour meter (10) comprises an electro-optical watt-hour sensor (12) adapted to be coupled to a consumer's connection to a source of electric power for sensing voltage supplied to, and the current drawn by, the consumer's electric load and for producing output signals indicative of a quantity of watt-hours of power utilized by the consumer. In the meter (10) a microprocessor (22) is coupled to the sensor (12) for receiving output signals therefrom and a memory (29) is coupled to the microprocessor (22) for receiving and storing data. A power supply (24) supplies D.C. power to the microprocessor (22) and includes a clock signal generator to supply a 60 Hz. clock signal to the microprocessor (22). Also a visual display (30) is coupled to the microprocessor (22) for providing a readout of the power consumed since the last reading of the solid state watt-hour meter. The electro-optical sensor (12) includes a yoke (14) having a voltage core (62) and at least one current core (66 or 67), an induction disk (16) mounted for rotation in yoke (14), a voltage coil (64) in FIG. 1 on the voltage core (62) and a current loop (68 or 69) on the current core (66 or 67) for causing, when energized, rotation of the induction disk (16). At least one aperture (76) in FIG. 2 is provided in the disk (16). LED's (71 and 72), positioned on one side of the disk (16), are coupled to the microprocessor (22). Photosensors (81 and 82) are positioned on the other side of the disk (16) for receiving light passing therethrough and for generating an output signal which is supplied to a direction sensing and revolution counting circuit (90) in FIG. 2 for sensing the direction of rotation of the disk (16) and for supplying such information to the microprocessor (22). A power supply coil (26) is mounted on the yoke (14) for supplying A.C. voltage to the power supply (24).