The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 16, 1984
Filed:
Aug. 20, 1982
Alisa K Rogers, Granada Hills, CA (US);
Kenneth E Weber, Pacific Palisades, CA (US);
Lockheed Corporation, Burbank, CA (US);
Abstract
A modified alkaline peroxide pre-bond process for the surface treatment of titanium is useful as a practical production process. In this modified process, an exceptionally wide range of allowable peroxide concentration, namely, from 0.001 molar to 0.2 molar (and preferably 0.001 molar to 0.01 molar) may be tolerated and a novel real-time peroxide monitoring and control technique is employed. The process is further improved by means of the use of stabilizers such as precipitated magnesium silicate which greatly increases bath life-time and reduces the overall operating cost of the process. Solution operating conditions have been defined which permit titanium adherends to be processed satisfactorily over a wide range of hydrogen peroxide concentration. In particular, the acceptable temperature range is 125.degree. F.-165.degree. F. (51.7.degree. C.-73.8.degree. C.); the treatment period is 15 to 25 minutes and the hydroxide concentration is 0.3 to 0.9 molar. The preferred values are approximately 145.degree. F. (62.7.degree. C.); 20 minutes, and 0.5 molar, respectively. An electrochemical method has been established utilizing a magnesium electrode (114) which provides a stable potential characteristic that is dependent only on the concentration of the peroxide. The resultant capability to reliably monitor the peroxide concentration in real time in turn permits an automated feed system to be effectively utilized for sustaining the peroxide concentration within the desired limits.