The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 07, 1984
Filed:
Jan. 07, 1981
John T Pogson, San Jose, CA (US);
Roger L Shannon, Federal Way, WA (US);
Robert H Hamasaki, Seattle, WA (US);
James L Franklin, Auburn, WA (US);
Dale F Watkins, Sumner, WA (US);
Ted J Kramer, Auburn, WA (US);
The Boeing Company, Seattle, WA (US);
Abstract
The heat pipe has a condensing area at one end and an evaporating area at the other end. An ion drag pump is within the condensing area to receive dielectric refrigerant condensate in its inlet. There is a liquid carrying tube having one end connected to the pump outlet and having its other end terminating adjacent the evaporating area to discharge refrigerant condensate therein. The evaporating area has heat receiving flow paths into which the condensate is adapted to flow and be vaporized, there being a vapor flow path from the evaporating area through which the vaporized refrigerant returns to the condensing area. The method includes cooling one end of the heat pipe to liquefy refrigerant therein to form a condensate, flowing the condensate into an ion drag pump and applying a sufficiently high voltage across a cathode and anode of the pump to produce ions in the refrigerant condensate, the ions then being accelerated toward the anode so as to create fluid motion and pumping action through the pump inlet. The condensate is thereby pumped through a closed-wall flow path to the other end of the heat pipe to which heat is applied to evaporate the refrigerant into a vapor. The vapor from the other end is then flowed to the one end of the pipe in which the condensate is formed by cooling.