The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Mar. 27, 1984

Filed:

Dec. 10, 1979
Applicant:
Inventors:

Donald I Townsend, Midland, MI (US);

Richard H Solem, Midland, MI (US);

Edward E Timm, Coleman, MI (US);

Victor J Caldecourt, Midland, MI (US);

Assignee:

The Dow Chemical Company, Midland, MI (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G01K / ;
U.S. Cl.
CPC ...
374 34 ;
Abstract

The accelerating rate calorimeter disclosed herein is an instrument designed for accurately determining the adiabatic thermal runaway characteristics of reactive chemicals. The mode of operation involves measuring the adiabatic self-heat rate of exothermic chemical reactions to determine the acceleration of the reaction rate as a function of temperature. The basic instrument includes a sample vessel which is positioned inside a reaction chamber. The environment surrounding the sample vessel is a gas, such as air, or an inert gas, or it can be a vacuum environment. Separate heater means are provided for heating the reaction chamber and the sample vessel. During the exothermic reaction of the chemical in the sample vessel, the temperature of the reaction chamber and the sample vessel are continuously monitored by separate temperature sensing means. Electronic controls sense any temperature differential between the sample vessel and the reaction chamber and adjust the temperature to maintain the desired adiabatic condition for the sample vessel. The data regarding time, temperature, and self-heat rate is automatically recorded by a computer system as the reaction proceeds. This data can be used to determine the adiabatic kinetics describing the reaction. In addition, by relating the experimental time to maximum rate, as a function of temperature, the thermal runaway potential of the reactive chemical can be determined at any temperature point in the experimental range, or, by extrapolation, at any lower temperature.


Find Patent Forward Citations

Loading…