The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 22, 1983
Filed:
Jun. 29, 1981
David L Favin, Little Silver, NJ (US);
Peter F Lynn, Little Silver, NJ (US);
Paul J Snyder, Linden, NJ (US);
Bell Telephone Laboratories, Incorporated,, Murray Hill, NJ (US);
Abstract
Accurate and reliable measurements of transmission parameters, e.g., envelope delay distortion or frequency response, of a network or facility (105) are obtained in a test system (FIG. 1) employing digital data acquisition units (121) by utilizing a unique test signal including a plurality of tones. A set of test signals is transmitted over the facility (105), a set of measurements is made of the received version for each test signal, each set of measurements is time averaged, and an ensemble of time-averaged sets of measurements is used to generate the desired measurements of the transmission parameters. System efficiency is enhanced by measuring prescribed transmission impairments, e.g., nonlinear distortion (3OID), signal-to-noise ratio (S/N) and frequency shift (FS) on the facility under evaluation and dynamically determining test system parameters in accordance with predetermined relationships with the measured impairments (FIGS. 5, 6 and 7), namely, the number (D) of test signals in the set of test signals, the maximum number (T) of consecutive measurements to be time-averaged, the required number of measurements (M) and the number of time-averaged measurements to be made in order to obtain a desired measurement accuracy.