The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 22, 1983
Filed:
Feb. 18, 1982
Carl L Elmore, Glens Falls, NY (US);
Erwin D Funk, Glens Falls, NY (US);
Kamyr, Inc., Glens Falls, NY (US);
Abstract
A method of transporting heavier than water particles such as coal from an elevated supply site to a delivery site at a substantial elevation below said elevated supply site comprising the steps of mixing the particles at the supply site with liquid such as water to form a slurry of particles and liquid, introducing slurry at the supply site into a confined path extending downwardly from the supply site to the delivery site, confining a volume of slurry material in energy transmitting relation to the slurry in the confined path such that the static head of the slurry in the confined path is transmitted to the confined volume, continuously withdrawing material from the confined volume at spaced first and second positions and introducing liquid into the confined volume in such a way as to (1) maintain the pressure conditions within the confined volume generally equal to the static head of the slurry in the confined path minus the friction losses and (2) enable slurry from the confined path to flow into the confined volume and the particles thereof to move within the confined volume such that the material at the first withdrawal position contains the larger particles of the slurry and the material at the second withdrawal position is substantially devoid of the larger particles of the slurry, continuously separating a liquid fraction from the material withdrawn from the confined volume at the second withdrawal position in such a way that the pressure of said liquid fraction is not materially lowered with respect to the pressure of the material in the confined volume, pumping the liquid fraction along a confined path extending upwardly to the supply site, and utilizing the liquid fraction pumped to the supply site as the liquid in the mixing step, and apparatus for carrying out the method.