The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 22, 1983
Filed:
Aug. 10, 1981
Bill C McCollum, Marlboro, MA (US);
Leonard J Andrews, Wayland, MA (US);
Alexander Lempicki, Wayland, MA (US);
GTE Laboratories Incorporated, Waltham, MA (US);
Abstract
A laser medium includes an ordered perovskite crystal of the general formula: A.sub.2 B Cr.sub.y B'.sub.1-y X.sub.6. A and B are alkali metal ions with the ionic radius of A greater than B. B' is an ion selected from the group consisting of Y.sup.3+, La.sup.3+, Gd.sup.3+, Lu.sup.3+, Sc.sup.3+, Al.sup.3+, Ga.sup.3+, and In.sup.3+. X is an ion selected from the group consisting of F.sup.-, Cl.sup.-, and Br.sup.-. A can be an ion selected from the group consisting of K.sup.+, Na.sup.+,Cs.sup.+, and Rb.sup.+. B can be an ion selected from the group consisting of K.sup.+-, Na.sup.+, and Li.sup.+. The chromium can be represented by Cr.sup.+3 ions. The laser media can be ordered perovskite polycrystalline compounds of the formulae: CsNaCr.sub.0.01 Y.sub.0.99 Cl.sub.6 ; KLi Cr.sub.y Sc.sub.1-y F.sub.6 (where y equals 0.01 and 0.10); K.sub.2 NaCr.sub.y Sc.sub.1-y F.sub.6 (where 0.01 .ltoreq.y.ltoreq.0.40). A laser can include an optical resonant cavity defined by a first totally reflective mirror and a second partially transmissive mirror. Within the cavity is an active laser medium comprising an ordered perovskite crystal of the general formula stated above, and may be of a specific formula as stated above. An optical pumping means is disposed adjacent to the optical cavity for exciting the laser medium to stimulated radiation. The mirrors are provided with reflective coatings on opposite surfaces of the active laser medium.